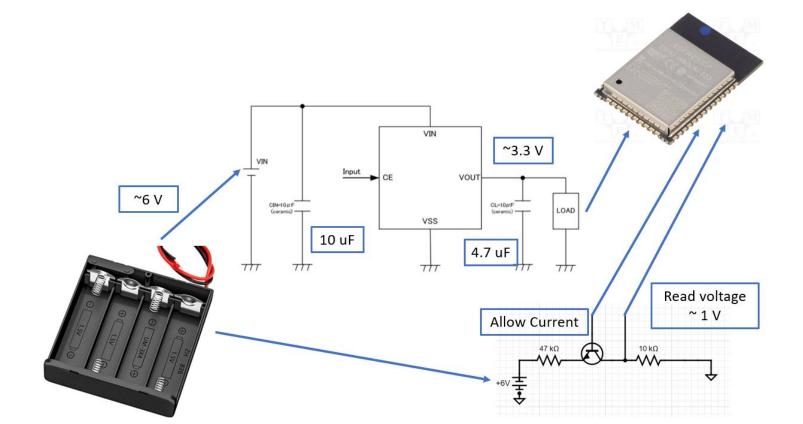

Design Review 1

IR Remote Project - Group 11


System Overview Broken Into Subsystems

Subsystem 1: Power - Design and Overview

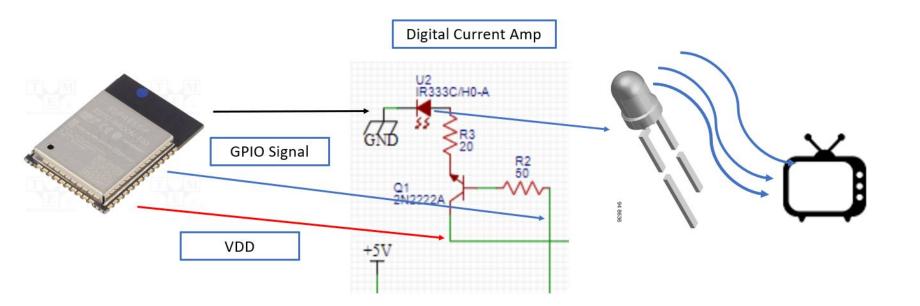
- Overview:
 - We want to supply with external batteries and give 3.3 V out of a regulator
 - Needs to power C3 and IR actuator circuit (which has amplifier circuit)
- Power will be supplied via batteries
 - VIN on regulator maxes at ~6.5 V, using 9 V is too much
 - Therefore, we'll use series connection of 3-4 AA, standard battery carrier
 - o <u>Link</u>
- GPIO pin monitors DC input voltage, notifies users when voltage is sagging
 - Resistor voltage divider that draws little to no current; ESP32 input voltage limit 3.3 V
 - Goes to ESP32, while operating, code will sample voltage on that pin and show it as power bar.
- XC6220
 - Output of 3.3 V, same passives as first board design from last semester

Subsystem 1: Power - Diagram

Subsystem 1: Power - Progress

- Selection of regulator
 - XC6220
- Selection of ESP32
 - We will use the C3; examples show single-core works for this application
 - 3.3 VIN will be used passives selected (see diagram) same as last semester
- Selection of battery powering and monitoring
 - User friendly, just need AAs.
 - Digitally allows users to know their battery status, **circuit designed.**

Subsystem 1: Power - Plan for Design Review 2


• Generate PCB

- Use last semester design as a model
- Passives for regulator will be the same; we chose C3, as we have seen 1-core examples for this type of project, therefore passive are same for ESP32 as last semester too
- Purchase battery pack and some AAs; **include solder pads on PCB** so external battery pack can attach.
- Only change:
 - Need to add small voltage divider circuit on PCB
 - Need a **MOSFET** with gate controlled by ESP32; allows current to flow for readout.
 - See diagram

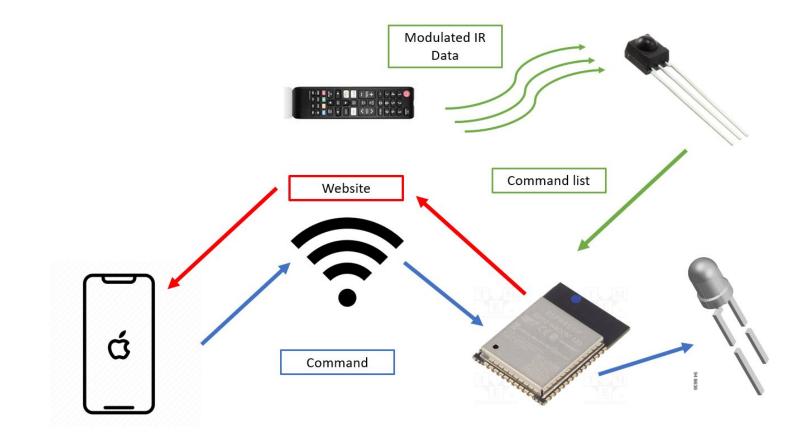
Subsystem 2: IR Actuator - Overview and Design

- Overview:
 - ESP32 outputs modulated data signal from GPIO pins. This circuit converts this to an IR signal.
 - ESP32 output amperage is ~40 mA, not quite enough for our IRED
 - We want simple amplifier circuit driven by GPIO pin of ESP32
- Design
 - A simple BJT transistor will work as amplifier; ESP32 signal goes to gate
 - Bias is 3.3 V, pick resistors accordingly;
 - Though our current configuration ~works~, we want ~100 mA through our IRED

Subsystem 2: IR Actuator - Diagram

SubSystem 2: IR Actuator - Progress

- Demonstrated our IRED works
 - We selected correct wavelength and bandwidth
 - Showed that ESP32 can output modulated IR signal
- That's about it!

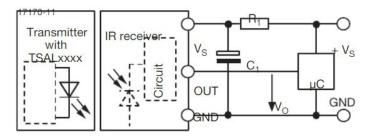

What needs to be done?

- Simulate find resistor values in diagram above to get optimal output voltage and current
 - Voltage: 1.3 V drop across IRED
 - Bias voltage: 3.3 is the most we can hope to achieve
 - ESP32 output: pins output 3.3 as well, may need divided to eliminate high voltages
 - Output current: we want 100 mA! Select resistors accordingly.
- Design PCB:
 - Make all components surface mount, routes ESP32 to the subcircuit; keep everything close together, capacitance affects BW
 - Feedthrough holes for IRED, build near the edge of device.

Subsystem 3: IR Code - Overview and Design

- Overview: This system blends with the website, as they cannot be decoupled. However, this code consists of a list of commands for changing TV properties like power, volume, cursor, etc.
- Design: create a library for each type of TV we're interested in with relevant commands. Commands can be found online or via our receiver circuit.

Subsystem 3: IR Code - Diagram


Subsystem 3: IR Code - Progress

- Receiver is up and running and we have a list of relevant codes for the TV in the SD lab
- Transmitter is up and running and we have used codes from remote to send signals with ESP32

Subsystem 3: IR Code - To do

- Keep abstracting / developing library
- Add code for new remotes (beyond samsung)
- Continue to integrate with website
- Create receiver circuit for PCB

APPLICATION CIRCUIT

 $R_{\rm 1}$ and $C_{\rm 1}$ recommended to reduce supply ripple for $V_{\rm S}$ < 2.8 V

Subsystem 4: Website - Overview and Design

- Website style:
 - HOME PAGE:
 - Select from current users, which will redirect to IP#\user_name\
 - Make new profile which will redirect to IP#\create_remote\
 - User Page
 - Just the remote made for that specific user
 - No ability to add buttons; would need to make new profile
 - Create Page
 - Page with bunch of prompts that allows people to make their own remote
- Website logistics:
 - Everything with customization is purely software; just need to code it out well
 - Buttons on the User Page need to link to hardware, i.e., call functions for turning on the TV.

Subsystem 4: Website - Progress


ESP32 Web Server - TV Remote

Live demo time!

Subsystem 4: Website - To do

- Make it prettier and more complex
- WiFi auto connect interface with phone as previously discussed
- Add customization features (lower priority)
 - Home page with profile selection
 - Ability to add profiles with certain features
 - \circ Example \rightarrow

Ranked To Do List for Next Time

- 1. PCB Design We have verified everything we need to and are ready to map out a board. We want the follow on the board (as a review):
 - Same VRM from first semester
 - Same ESP32 (C3) as first semester
 - Battery power monitor circuit: Voltage divider powered by battery connected to GPIO pin of C3; divider is an open circuit due to MOSFET whose gate is connected to a different GPIO of the C3. To read batteries, output high on MOSFET gate, read voltage divider.
 - BJT with bias resistors whose gate is connected to GPIO pin of C3 to power IRED. This is to maximize output current.
 - Purchase and implement battery holder. Make sure there are solder pads / through holes on board for this.
 - Circuit for receiver.
- 2. Website!

Question

- Do we have access to transistor for kitboard testing?
- Do we want to use surface mount transistors for final PCB or add through holes?
- Monitoring batteries and the usage of 4AA discussion